R – an interpreted programming environment for statistical computing and graphics
Coming to R from Python and other programming languages, my notes are comparative versus exhaustive. See the following for a good guide.
There is a mechanism for installing R local packages (akin to the usage of virtualenv for isolated Python package installations)
install.packages
Lists are like dictionaries
$ is a key (like [‘sfsf’] or dot)
data.frames are like pandas
dot just a naming convention
<- and <= assignment
Speed tips:
Vectorise (map/reduce like functions) vs looping in r
Can easily import/export CSV
Space tip – If you need to store large amounts of data, consider using binary vs ASCII or other plain text files.
Can access DBs directly, using data frames
Note to self, look up NETCDF (commonly used as a climate data format)
Nice built in datasets
Very easily generate charts and save the output to jpeg, pdf, etc. See for more options: